107 research outputs found

    Developmental trajectories of internally and externally driven temporal prediction

    Get PDF
    The ability to generate temporal prediction (TP) is fundamental to our survival since it allows us to selectively orient our attention in time in order to prioritize relevant environmental information. Studies on adult participants showed that externally and internally driven mechanisms can be engaged to establish TP, both resulting in better behavioural performance. However, few studies on children have investigated the ability to engage internally and externally driven TP, especially in relation to how these mechanisms change across development. In this study, 111 participants (88 children between six and eleven years of age, and 23 adults) were tested by means of a simple reaction time paradigm, in which temporal cueing and neutral conditions were orthogonally manipulated to induce externally and internally driven TP mechanisms, as well as an interaction between the two. Sequential effects (SEs) relative to both tasks were also investigated. Results showed that all children participating in the study were able to implement both external and internal TP in an independent fashion. However, children younger than eight years were not able to combine both strategies. Furthermore, in the temporal cueing blocks they did not show the typically-observed asymmetric SE pattern. These results suggest that children can flexibly use both external and internal TP mechanisms to optimise their behaviour, although their successful combined use develops only after eight years of age

    Spatiotemporal Neurodynamics Underlying Internally and Externally Driven Temporal Prediction: A High Spatial Resolution ERP Study

    Get PDF
    Temporal prediction (TP) is a flexible and dynamic cognitive ability. Depending on the internal or external nature of information exploited to generate TP, distinct cognitive and brain mechanisms are engaged with the same final goal of reducing uncertainty about the future. In this study, we investigated the specific brain mechanisms involved in internally and externally driven TP. To this end, we employed an experimental paradigm purposely designed to elicit and compare externally and internally driven TP and a combined approach based on the application of a distributed source reconstruction modeling on a high spatial resolution electrophysiological data array. Specific spatiotemporal ERP signatures were identified, with significant modulation of contingent negative variation and frontal late sustained positivity in external and internal TP contexts, respectively. These different electrophysiological patterns were supported by the engagement of distinct neural networks, including a left sensorimotor and a prefrontal circuit for externally and internally driven TP, respectively

    Behavioral and electrophysiological correlates of cognitive control in ex-obese adults

    Get PDF
    Impaired cognitive control functions have been documented in obesity. It remains unclear whether these functions normalize after weight reduction. We compared ex-obese individuals, who successfully underwent substantial weight loss after bariatric surgery, to normal weight participants on measures of resistance to interference, cognitive flexibility and response inhibition, obtained from the completion of two Stroop tasks, a Switching task and a Go/NoGo task, respectively. To elucidate the underlying brain mechanisms, event-related potentials (ERPs) in the latter two tasks were examined. As compared to controls, patients were more susceptible to the predominant but task-irrelevant stimulus dimension (i.e., they showed a larger verbal Stroop effect), and were slower in responding on trials requiring a task-set change rather than a task-set repetition (i.e., they showed a larger switch cost). The ERP correlates revealed altered anticipatory control mechanisms (switch positivity) and an exaggerated conflict monitoring response (N2). The results suggest that cognitive control is critical even in ex-obese individuals and should be monitored to promote weight loss maintenance

    The neural bases of event monitoring across domains: a simultaneous ERP-fMRI study.

    Get PDF
    The ability to check and evaluate the environment over time with the aim to detect the occurrence of target stimuli is supported by sustained/tonic as well as transient/phasic control processes, which overall might be referred to as event monitoring. The neural underpinning of sustained control processes involves a fronto-parietal network. However, it has not been well-defined yet whether this cortical circuit acts irrespective of the specific material to be monitored and whether this mediates sustained as well as transient monitoring processes. In the current study, the functional activity of brain during an event monitoring task was investigated and compared between two cognitive domains, whose processing is mediated by differently lateralized areas. Namely, participants were asked to monitor sequences of either faces (supported by right-hemisphere regions) or tools (left-hemisphere). In order to disentangle sustained from transient components of monitoring, a simultaneous EEG-fMRI technique was adopted within a block design. When contrasting monitoring versus control blocks, the conventional fMRI analysis revealed the sustained involvement of bilateral fronto-parietal regions, in both task domains. Event-related potentials (ERPs) showed a more positive amplitude over frontal sites in monitoring compared to control blocks, providing evidence of a transient monitoring component. The joint ERP-fMRI analysis showed that, in the case of face monitoring, these transient processes rely on right-lateralized areas, including the inferior parietal lobule and the middle frontal gyrus. In the case of tools, no fronto-parietal areas correlated with the transient ERP activity, suggesting that in this domain phasic monitoring processes were masked by tonic ones. Overall, the present findings highlight the role of bilateral fronto-parietal regions in sustained monitoring, independently of the specific task requirements, and suggest that right-lateralized areas subtend transient monitoring processes, at least in some task contexts

    Transcranial Magnetic Stimulation and Neuroimaging Coregistration

    Get PDF
    The development of neuroimaging techniques is one of the most impressive advancements in neuroscience. The main reason for the widespread use of these instruments lies in their capacity to provide an accurate description of neural activity during a cognitive process or during rest. This important advancement is related to the possibility to selectively detect changes of neuronal activity in space and time by means of different biological markers. Specifically, functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and nearinfrared spectroscopy (NIRS) use metabolic markers of ongoing neuronal activity to provide an accurate description of the activation of specific brain areas with high spatial resolution. Similarly, electroencephalography (EEG) is able to detect electric markers of neuronal activity, providing an accurate description of brain activation with high temporal resolution. The application of these techniques during a cognitive task allows important inferences regarding the relation between the detected neural activity, the cognitive process involved in an ongoing task, and behaviour: this is known as a \u201ccorrelational approach\u201d

    Transcranial Magnetic Stimulation Trains at 1 Hz Frequency of the Right Posterior Parietal Cortex Facilitate Recognition Memory

    Get PDF
    Neuroimaging, neuropsychological, and brain stimulation studies have led to contrasting findings regarding the potential roles of the lateral parietal lobe in episodic memory. Studies using brain stimulation methods reported in the literature do not offer unequivocal findings on the interactions with stimulation location (left vs. right hemisphere) or timing of the stimulation (encoding vs. retrieval). To address these issues, active and sham 1 Hz repetitive transcranial magnetic stimulation (rTMS) trains of 600 stimuli were applied over the right or left posterior parietal cortex (PPC) before the encoding or before the retrieval phase of a recognition memory task of unknown faces in a group of 40 healthy subjects. Active rTMS over the right but not the left PPC significantly improved non-verbal recognition memory performance without any significant modulation of speed of response when applied before the retrieval phase. In contrast, rTMS over the right or the left PPC before the encoding phase did not modulate memory performance. Our results support the hypothesis that the PPC plays a role in episodic memory retrieval that appears to be dependent on both the hemispheric lateralization and the timing of the stimulation (encoding vs. retrieval)

    TMS-evoked long-lasting artefacts: A new adaptive algorithm for EEG signal correction

    Get PDF
    OBJECTIVE: During EEG the discharge of TMS generates a long-lasting decay artefact (DA) that makes the analysis of TMS-evoked potentials (TEPs) difficult. Our aim was twofold: (1) to describe how the DA affects the recorded EEG and (2) to develop a new adaptive detrend algorithm (ADA) able to correct the DA. METHODS: We performed two experiments testing 50 healthy volunteers. In experiment 1, we tested the efficacy of ADA by comparing it with two commonly-used independent component analysis (ICA) algorithms. In experiment 2, we further investigated the efficiency of ADA and the impact of the DA evoked from TMS over frontal, motor and parietal areas. RESULTS: Our results demonstrated that (1) the DA affected the EEG signal in the spatiotemporal domain; (2) ADA was able to completely remove the DA without affecting the TEP waveforms; (3). ICA corrections produced significant changes in peak-to-peak TEP amplitude. CONCLUSIONS: ADA is a reliable solution for the DA correction, especially considering that (1) it does not affect physiological responses; (2) it is completely data-driven and (3) its effectiveness does not depend on the characteristics of the artefact and on the number of recording electrodes. SIGNIFICANCE: We proposed a new reliable algorithm of correction for long-lasting TMS-EEG artifacts

    Efficacy of a Training on Executive Functions in Potentiating Rehabilitation Effects in Stroke Patients

    Get PDF
    Cognitive impairment after a stroke has a direct impact on patients\u2019 disability. In particular, impairment of Executive Functions (EFs) interferes with re\u2010adaptation to daily life. The aim of this study was to explore whether adding a computer\u2010based training on EFs to an ordinary rehabilitation program, regardless of the specific brain damage and clinical impairment (motor, language, or cognitive), could improve rehabilitation outcomes in patients with stroke. An EF training was designed to have minimal motor and expressive language demands and to be applied to a wide range of clinical conditions. A total of 37 stroke patients were randomly assigned to two groups: a training group, which performed the EF training in addition to the ordinary rehabilitation program (treatment as usual), and a control group, which performed the ordinary rehabilitation exclusively. Both groups were assessed before and after the rehabilitation program on neuropsychological tests covering multiple cognitive domains, and on functional scales (Barthel index, Functional Independence Measure). The results showed that only patients who received the training improved their scores on the Attentional Matrices and Phonemic Fluency tests after the rehabilitation program. Moreover, they showed a greater functional improvement in the Barthel scale as well. These results suggest that combining an EF training with an ordinary rehabilitation program potentiates beneficial effects of the latter, especially in promoting independence in activities of daily living

    Fronto-parietal homotopy in resting-state functional connectivity predicts task-switching performance

    Get PDF
    Homotopic functional connectivity reflects the degree of synchrony in spontaneous activity between homologous voxels in the two hemispheres. Previous studies have associated increased brain homotopy and decreased white matter integrity with performance decrements on different cognitive tasks across the life-span. Here, we correlated functional homotopy, both at the whole-brain level and specifically in fronto-parietal network nodes, with task-switching performance in young adults. Cue-to-target intervals (CTI: 300 vs. 1200 ms) were manipulated on a trial-by-trial basis to modulate cognitive demands and strategic control. We found that mixing costs, a measure of task-set maintenance and monitoring, were significantly correlated to homotopy in different nodes of the fronto-parietal network depending on CTI. In particular, mixing costs for short CTI trials were smaller with lower homotopy in the superior frontal gyrus, whereas mixing costs for long CTI trials were smaller with lower homotopy in the supramarginal gyrus. These results were specific to the fronto-parietal network, as similar voxel-wise analyses within a control language network did not yield significant correlations with behavior. These findings extend previous literature on the relationship between homotopy and cognitive performance to task-switching, and show a dissociable role of homotopy in different fronto-parietal nodes depending on task-demands
    corecore